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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1505

THE BENDING-MOMENT DISTRIBUTION OF CAMBERED-SPAN WING

SYSTHNS HAVING MINIMUM INDUCED DRAG

By Clarence D. Cone, Jr.

SUMMARY

The basic integral equations for determining the bending-moment distributions

of optimally loaded cambered-span wing systems are derived and applied to the
calculation of the moment distributions for the families of circular-arc and

semiellipse camber forms. The effects of the type and amount of camber on the

moment distribution are investigated, and it is shown that spanwise camber results

in an appreciable increase in the local bending moment near the tips, as compared

with that of flat wings furnishing equal lift. The quantitative relation between

the magnitude of the bending moment and the induced-drag efficiency of cambered-

span wings is developed.

A simple analysis is carried out to establish the wing structural require-

ments dictated by the bending-moment distribution, and a procedure is outlined

for determining the optimum chord distribution of the wing for obtaining minimum

profile drag.

INTRODUCTION

The theoretical possibilities of increasing the aerodynamic efficiency of

lifting systems having limited projected span lengths by use of cambered-span

airfoils are discussed in detail in reference 1. The design procedures for

optimizing the aerodynamic efficiency of cambered wings at cruise conditions are

outlined in reference 2. In both of these papers it is explicitly pointed out

that the possibility of obtaining useful increases in flight efficiency with

cambered-span wings, as compared with flat wings of equal projected span, depends

entirely upon the ability to construct cambered wings with sufficiently low

profile-drag coefficients and structural weights. Hence, in design analyses

intended to evaluate the relative efficiency of cambered wings for specific

applications, it is necessary to consider the effects of the aerodynamic force
and moment distributions on the structural characteristics of the wing and also

the associated effects of the structural characteristics on the wing profile

drag.

Of special importance in this respect is a knowledge of the bending-moment

distribution associated with the optimum aerodynamic loading of cambered-span



wings. The curvature of such wings produces lateral componentsof the local
aerodynamic forces, in addition to the lift or vertical components, and these
additional forces can increase the magnitude of the bending-momentdistribution
along the wing, as comparedwith the distribution along a flat wing of equal
projected span, for the same total lift force. Since the minimum spar depth of

a wing is in many cases governed by the bendlng-moment distribution, if the use

of excessively heavy spars is to be avoided the minimum allowable profile thick-

ness will be governed by the bendlng-moment distribution. Thus, if the wing

bending moments are excessively large, t_e minimum attainable profile thickness

may be of such a magnitude that the wing profile drag becomes prohibitively

large.

In order that such aerodynamic-structural relationships may be included in

the overall design and efficiency evaluation of cambered-span wings, this paper

develops the basic relations necessary for determining the bending-moment distri-

bution of any optimally loaded cambered wing form, and formulates some general

relations for use in comparing the effects of various forms and amounts of span-

wise camber on the bending moments. In particular, nondimensionalized bending-

moment distributions are determined for the families of circular-arc and semi-

ellipse camber lines. The relation between the magnitude of the bending moment

and the induced-drag efficiency is derived, and a procedure is presented for

determining the optimum wing chord distribution for minimum profile drag when the

section thickness is known.

The relations developed are for the case of wings having simple camber forms.

(See ref. 1.) The results may be applied, however, to the analysis of more com-

plex forms, such as wings having closed-arc or branched tips, by summing the

moment contributions of the various elements of the total wing system.

Although the considerations herein are discussed primarily in relation to

airfoils, it should be noted that the general features of the analysis also apply

directly to the case of water-based lifting systems such as nonplanar hydrofoil

systems having centrally located support struts.
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SYMBOLS

span of flat-span reference wing

projected span of cambered-span wing

wing chord length

section drag coefficient

section lift coefficient
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C1
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Do'

d
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F'

f
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h
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K

k

L

L'

M

M !

NA

n

P

q

qz

R

r

value of k for @ = 1.O

moment-of-inertia constant

profile-drag force intensity

spanwise-camber depth (fig. 3)

modulus of elasticity

aerodynamic-force loading intensity (fig. 2)

camber-line function

derivative of camber-line function

maximum-stress distance factor

area moment of inertia of wing spar

camber function, circular arcs

induced-drag efficiency factor

total vertical lift

lift loading intensity

bending-moment distribution (moment positive in counterclockwise

direction; see fig. 2)

nondimensional form of M

constant _ F°/w°

b '/2

neutral-axis distance factor_ 2h/t

bending moment ratio function

dynamic pressure, -_-_V2

wake induced velocity at wing (vertical for wings having a plane of

symmetry)

local radius of curvature of neutral axis of spar

radius of curvature of circular arc

arc-length coordinate (fig. l)
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S l
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V

W

y,

y, z

Z

F

Fo

7

E

P

total arc length of spanwise camber line, eq. (35)

variable coordinate of spanwise camber line

section profile thickness

flight velocity

total load carried by wing

downwash velocity far behind wing

side-force loading intensity

Cartesian coordinates of spanwise camber line

section modulus, I/h

d
camber factor, .-_T_

_/b'

local circulation distribution

circulation of root section

nondimensional coordinate, Y
b'/2

nondimensional coordinate3 z
b'/2

constant, 2C 2

flexural stress

nondimensional coordinate3
b'/2

thickness ratio, t/c

Cartesian coordinates of a variable point on spanwise camber line

mass density

nondimensional coordinate_
b'/2

slope of camber-line tangeflt,
tan_l d__z

dy
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Subscripts :

c

D

eff

f

max

min

opt

t

i

2

eccentric angle of ellipse

dummy variable of integration (eq. (AS))

span ratio, b/b '

maximum-stress ratio, 8max

cambered-span wing

design condition

effective

flat-span wing

maximum

minimum

optinmun

tip

property at

circular-arc camber line

semiellipse camber line

THE OPTIMUM LIFT DISTRIBUTION

It is shown in reference i that when a cambered-span wing is considered as

a bound vortex line (fig. i) the wing will possess a minimum induced drag for a

given vertical lift when the distribution of circulation P(s) along the line

is such that the component of the wake induced velocity normal to the line at

every point has the value

w o

\llqZBeff = -_ cos T (i)

z

r'(_)

Y

Figure i.- Coordinate system of a lifting arc.
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It is further shown in this reference that the optimum circulation distribution

can be obtained by use of conformal transformation techniques or, experimentally,

by use of an electrical potential-flow analog. The optimum distribution in the

nondimensional form F----(s) is a function only of the shape of the span camber
ro

line z(y), or 8(y). The aerodynamic-force intensity F'(s) along the lifting

line is then obtained from the Kutta-Joukowski theorem as

r--(s)
F'(s) = pvr o ro

(2)

This distribution of the local aerodynamic force, corresponding to minimum

induced drag for a given vertical lift L, determines a corresponding bending-

moment distribution along the wing.

In practice, cambered wings are designed to attain minimum total drag at
the "design" flight conditions of the particular aircraft mission under consider-

ation (ref. 2)_ and the lift distribution will be that for minimum induced drag.

At conditions other than those of design flight, such as deviations of the local

angle of attack or dynamic pressure from the optimum values, the wing force dis-

tribution will be somewhat different with a corresponding alteration of the (non-

dimensional) bending-moment distribution. For moderate variations, however, it

is not to be expected that the nondimensional moment distribution will be signif-

icantly different from that for the design condition. Consequently, for the pur-

poses of this paper_ it is assumed that the nondimensional bending-moment distri-

bution corresponds to the optimum lift distribution in all cases.

THE BENDING-MOMENT DISTRIBUTION AT OPTIMUM LOADING

In this section, the generalized integral equation is derived for the

bending-moment distribution along the arc of a curved wing having a camber llne

of arbitrary form z(y) and supporting a given load W. It is assumed through-

out the analysis that the camber llne is optimally loaded; that is, the circula-

tion distribution r(s) is that necessary for minimum induced drag. The dimen-

sional form of the integral is considered first.

The Dimensional Moment Distribution

The aerodynamic-force loading intensity F' acting at the local point

of the lifting arc of figure P can be resolved into the components

S '

6



L' = F' cos T (3) z,n

and

Y' = F' sin T (4)

where T is the inclination of the tan-

gent to the camber line. By denoting the

position of point s' by its corresponding

Cartesian coordinates (_,_), the differen-

tial of bending moment at the fixed point

s(y_z) due to the loading at the variable

point s' is given by

Y,_

Figure 2.- Local-force intensity components.

dM = _'(_ - y)cos _ + F'(_ - z)sin T_ds'
(5)

where the subscript _ denotes that T is to be evaluated at the variable point

(_,_). The total bending moment at the fixed point s due to the total aero-

dynamic load outboard of the point is then given by

M(s) = _sSt_'(s ') (_ - y)cos T_ + F'(s') (_ - z)sln T_ds'
(6)

and, since the limit s applies to any point on the semispan, this equation

specifies the bending-moment distribution for the wing. It is obvious that 3

since the lifting elements of the cambered wing are not confined to a horizontal

plane, additional bending-moment contributions arise from the side-force com-

ponents as compared with a flat wing having the same distribution of vertical

lift. In the limiting case of a flat-span wing, equation (6) reduces to

b'/e
M(y) = - y)d (7)

In equation (6) the aerodynamic-force loading intensity F'(s') is given by

F'(s')=  Vr(s') (8)

where P(s') is the circulation distribution corresponding to the optimum

loading for minimum induced drag. Then, since

cos v_ ds' = d_

sin _ ds' d

(9)

the bending moment can be expressed as a function of y in the form

7



' d

"2 r---(_ - y)d_ + f- (_ - z)d (I0)
M(y) ; pVP o ro ro

In equation (i0) P/Po is the optimum nondimensional circulation distribution

as determined by either the conformal transformation or electrical analog method

of reference i, and (z,y) and (D,_) are related by the camber-line equation

z ; f(y)_ (ii)

where f denotes the same functional relation. The integral limit d corre-

sponds to the vertical coordinate of the wing tip zt = d. By using the rela-

tions of equations (ii) and the differential expression

the second integral in equation (i0) becomes

d (_ _ z)d_ = f(_) - f( f'(_)d_ (13)

and the bending-moment distribution M(y) is then given by

M(y) =pVro (_) _ -y)

It should perhaps be noted here that p_(_)

+

is the new function obtained by

(14)

stating the circulation P at corresponding points _ and s. Since the rela-

tion between the arc-length coordinate s and the Cartesian coordinate y of

the camber line is obtained from

s = + d_ (i5)

the moment distribution M(s) along the camber line follows directly from

equation (14).

The total vertical lift force L of a cambered-span wing is given by

st pL = DVP o _-_(s) cos T ds

-st

(16)

Y
or by using the nondimensional coordinate _ -

b'/2



b' r__(7)d7 (17)
L = pVFo -_ i Fo

As shownin reference l, the integral of equation (17) is a dimensionless constant
for any particular camberform for the optimally loaded condition_ that is 3

__i _(7)d7 = B (18)
i

Hence, if in flight the wing supports a total load W with an optimum load
distribution, then L = W and the circulation Fo in the wing plane of symmetry
is obtained from the relation

ro = w (19)
b'

pvT B

The corresponding wing bending-moment distribution in terms of the wing span and

load carried is obtained from equation (14) in the form

: __ (_) _ _ y)+ _(_)- f(y)_f,(_)d_
b'B
2

(20)

The moment distribution M(s) along the curved span is obtained by use of

equation (15).

The Nondimensional Moment Distribution

Equation (20) of the preceding section can be nondimensionalized by dividing

all distances by b'/2. With the following definitions

5 = z

b 1/2

k=. TI

b '/2

b '/2
J

(21)
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the moment distribution becomes

M'(7)= w--M(7)b'- _-i /71
2

Po
(22)

For a specific nondimensional camber form given by 5 = f(7), or _ = f(c),

where f is the characteristic function of the camber form, the right-hand side

of equation (22) is a function only of the dimensionless span coordinate 7,

since the function M' depends only upon the shape of the camber line when the

wing is optimally loaded.

The dimensional bending-moment distribution M(y) (or the corresponding

function M(s)) of any given size wing is obtained directly from equation (22)

by multiplying M' by the load W and semispan length b'/2; thus 3

b '

M(y)= w -T M'(7) (23)

b !

where Y = 7 -_ gives the dimensional coordinate y corresponding to the non-

dimensional coordinate _. In effect 3 the value of M' for a particular value

,, b '
of 7 represents the fraction of the "reference moment W -7 which acts at

that point of the span. In particularj the root bending moment M(0) is given by

b' b'
M(O) = W -_- M'(O) = W _- • Constant (24)

where the constant depends only upon the camber form f.

THE BENDING-MOMENT DISTRIBUTION FOR FAMILIES OF CAMBERED LIFTING LINES

As an example of the application of the relations derived in the previous

section and in order to obtain information for later use, the nondimensional

bending-moment distributions for two families of camber lines are now derived.

Circular-Arc Lifting Lines

The equation of the symmetrical circular-arc segment (see fig. 3) is

mr (r 2 y2) I/2 ( _)= _ _ o<y__ (25)

lO



Writing equation (25) in nondimensional form

by dividing by b'/2 gives the following

resuit:

= r (26)
b'/2 - %

If the particular arcs of the family are

denoted by their camber factor _, where

= _ (fig. 3), the camber-line equation
b '/2

of the entire family can be written. Thus,

in terms of _, the radius for circular arcs

is given by

z r

Y

Figure 3.- Geometrical relations for a

circular arc.

r i+_ 2
- - K(_)

b '/2 2IS
(27)

and equation (26) becomes

8 = fl(7)=K(_)- _2(_)_ 72]_/2 (28)

In terms of the local variables _ and Z equation (26) is given by

= fl(_)=K(_)- _2(_)_ _]z/2 (29)

Differentiation of equation (29) gives the nondimensional form of f'l(d) as

f i(_) (K2_ o2)1/2 (3o)

The substitution of equations (28), (29) , and (30) into equation (22) and

use of the functions B(_) and _(a,_)

tion of M'(F) for any desired value of

indicated. The values of B and F/P o

by conformal transformation.

given in figure 4 allow the determina-

by carrying out the integration

presented in figure 4 were determined

The integration of equation (22) for the case of circular arcs has been

performed numerically by machine computation, and the results are presented in

figure 5. It is obvious that the local bending moments increase appreciably as

the camber is increased while a constant projected span length and vertical llft

are maintained.

ll
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Figure 4.- Variation of the optimum nondimensional circulation distribution and efficiency constants

of circular-arc camber lines with degree of camber.
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0
o -_ .2 .3 4 5 1.0

Figure 5-- Bending-moment distributions of circular arcs.
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The dimensional moment distribution for a wing with circular-arc camber

having any specified semispan length and total lift can be obtained from equa-

tion (23) as a function of y, and then determined as a function of the arc-

length coordinate s by use of equation (15). For the circular-arc camber line,

equation (15) yields

=b-_' i + _2 sin-l_b 4_Y )_s(y) 4 _ '(1+ _2

Semiellipse Lifting Lines

From the geometrical relations of figure 6_ the equation of the symmetrical

semiellipse camber line is

(z - d)2 y2
+ -- = 1 (31)

Employing the camber factor

in equation (31) gives

d !
6-

b '/2

Figure 6.- Geometry of th6 ellipse.

+ - z (32)

and the nondimensional equation of the semiellipse camber line follows directly

as

(8 - _)2
+ 7 2 = 1 (33)

_2

The basic relations for calculating the bending-moment distribution are thus

given by

8 =f2(7): - 2

x = f2('_) = 13- p z-__ 2

f'2(7) = P o"

and the functions B(_) and _o(_,_) for the semiellipse form are given in

figure 7.

(34)

These latter functions were determined by use of the analog technique

13
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Figure 7.- Variation of the optimum nondimensional circulation distribution and efficiency con-
stants of semiellipse camber lines with degree of camber.

discussed in reference i. With use of these relations, equation (22) has been

integrated to obtain the nondimensional bending-moment function M'(7 ) for the

family 0 _ _ _ i of semiellipse camber lines, and the results are presented

in figure 8. The moment distributions are very similar to those of figure 5 for

circular-arc forms.

The dimensional distribution M(y) is obtained by use of figure 8 and equa-

tion (23). The function M(s) can then be determined by use of equation (15).

Application of equation (15) leads to an elliptical integral for the case of

semiellipse camber forms, and thus s cannot be expressed as a function of y

in simple form. The integration of equation (15) for the entire family of semi-

ellipse forms 0 _ _ _ i has been carried out by numerical methods (as shown in

the appendix)_ and the results are presented in nondimensional form in figure 9.

EFFECT OF CAMBER ON THE BENDING MOMENT

An optimally loaded camber-span wing of projected semispan b'/2 furnishing

a vertical lift force L will theoretically have an induced drag 1/k times

that of an elliptically loaded flat wing of semispan b/2 furnishing the same

lift, where the efficiency factor k is a function only of the camber factor

14
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Figure 8.- Bending-moment distributions for semiellipses.
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Figure 9.- Relation between arc-length coordinate s and Cartesian coordinate y for semiellipse forms,
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and the span ratio _ = b/2 for any particular camber form. (See ref. i.) In
b'/2

the particular case where a cambered wing is compared with a flat wing of equal

projected semlspa_ (_ = i), the value of k is greater than 1.0 so that the

induced drag of the cambered wing is less than that of the flat wing. However,

the profile drag of the curved wing may be larger than that of the flat wing

since the total arc length of the curved span will be greater than the flap span

when _ = i. It is also possible that the structural weight of the curved wing

may exceed that of the flat wing because of the longer physical span sT where

s_ = ds = + dy>b (35)
- st -b '/2

An increase ifi structural weight would necessitate operation of the curved wing

at a higher lift condition, and the induced drag of the wing would then increase.

Since the bending-moment magnitude and distribution of a curved wing can

influence both the structural weight and the profile drag (through the effect on

the minimum allowable profile thickness) of the wing_ it is of interest to exam-

ine the quantitative effects introduced by curvature on the bending moments. In

particular, the magnitudes of the bending moments of a cambered wing as compared

with those of a flat wing are of interest.

The Bending-Moment Distribution for a Flat-Span Wing

The optimum distribution of the lift loading intensity necessary for minimum

induced drag for a flat lifting line is elliptical in form, and the corresponding

circulation distribution is given by

(36)

The nondimensional bending-moment distribution of the flat span can therefore

be determined from equation (22) by using the nondimensional form of equation (36)

= (1 -
Po

(37)

and the value 1.57 for B. In this simple ease equation (22) can be directly

integrated with the result

M'f()') = 0.637 (38)

16



This function is plotted in figure i0. The dimensional moment distribution

Mr(Y) is obtained from this figure for any elliptically loaded wing by multi-

plying the M'f value at a particular station Y = 7 by W _-, the ref-

erence moment of the wing. It is of course obvious that the distribution of

figure i0 is identical with the distributions for _ = 0 in figures 5 and 8,

since equations (28) and (33) both reduce to the distribution for a straight line

when _ = O.

.24

\
\

16

M'f .12

.O8

.O4

0
0

\
\

Figure i0.- Bending-moment distribution for the flat span.

Comparison of the Bending Moments of Flat and Curved Wings

For purposes of comparison, the moment distribution of any cambered wing

can be divided by that of the optimally loaded flat wing of equal projected

span b' and furnishing the same vertical lift force. Under such conditions,

M T

(39)

17



where the subscripts c and f refer respectively to the cambered- and flat-

span wings. A plot of the function M'c/M' f of equation (39) explicitly shows

the effects of camber on the local bending moment. For values of the ratio

greater than 1.0_ of course, the moment of the cambered wing will exceed that of

the flat wing, for equal total lift forces.

Plots of the bending-moment ratio for the families of clrcular-arc and

semiellipse forms are shown in figures ll and 12_ respectively. It is seen that
increased curvature causes large increases in the bending-moment ratios over the

outboard portion of the spans. The root bending moment (7 = O) also increases

with increasing camber_ but not as rapidly as for the outboard sections of the

wing. The dashed segments of the curves in these figures are extrapolations

beyond the last calculated point at 7 = 0.9.

C

8

/ J7 ...................... --..... /
1.0 i /

.... / /
6_ / /

3 --=

J

J jJJ
2 ........ _ j

f
.._.__.. -.-------

l"

/
/

/ /i 11

/ j

jJ / j_
J J

J .6 jJ

J
J

I .4

0

0 .1 •2 -3 ._' .5 .6 .7 .8

7

Figure ii.- Bending-moment ratio distributions for circular arcs.

.9 1.O
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/ /
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1.0 /

/ J/

o .z .2 .3 ._ -5 .6 .? .8 .9 z.o

7

Figure 12.- Bending-moment ratio distributions for semlellipses.

The reason for the increased bending-moment ratio on the outer sections of

the wings is evident from figure 13. Because of the large value of the projected

vertical height of span compared with the projected horizontal length (corre-

sponding to the flat span wing), the effective moment-producing force of the

cambered wing is much larger.

Relation Between the Bending Moment and Induced-Drag Efficiency

The foregoing comparisons have been made on the basis of equal projected

spans for the cambered and flat wings (, = 1.O). With this particular restric-

tion 3 the cambered wing will have less induced drag for the same liftj since k
is greater than 1.0 for the case b' = b. However, as shown In equation (50)

of reference l, k = C1/@ 2 (where @ = b/b') and the relative efficiency of the
cambered wing depends upon the length of its projected span b' compared with

19
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%-# b r Y

2

Flat wing

Fig_are13.- Force and moment compari-
sons for curved and flat wings.

I

the span b of the flat reference wing. Since the bending-moment ratio Mc/M f

is also a function of _, the relative bending moment can be directly related to

the wing efficiency.

The bending-moment ratio, when written for the general case where the wings

have equal lift loads but different projected span lengths, is obtained as a

function of @ from the expression

M' c M'

MfM-- = b/2 = ,-1 (40)

Then, since @ = _ (where CI is the value of k when the semispans of

cambered and flat wings are equal, i.e., when _ = i) equation (40) can be

written as a function of the cambered-wing efficiency. Thus,

Mc C_ 1 M'c"
(41)

In equation (41), CI and M'c/M' f are functions only of the form and _ value

of the particular camber line, for a given value of 7. Thus, equation (41)

gives the moment ratio at equal fractions of the respective semispans (i.e._

equal values of 7) for all values of k. Since P(7) is uniquely determined

for each member of any particular family of c_r_ber forms by specifying a value

for 8, equation (41) allows the determination of the bending-moment variation

of the curved wing with its induced-drag efficiency (or projected semispan length

b'/2). From the equation, it is obvious that the ratio of the bending moment

of the curved wing at a given fraction of the semispan b'/2 to that of the flat

wing at an equivalent spanwise station will, for equal total lift forces,

increase as the efficiency k increases.
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As an example of the use of equation (41), the bending-momentratio is
calculated for the root station (7 = O) for the semiellipse camberline with

= 0.5, for k = 1.0. This meansthat the flat wing and curved wing have equal
i

lift and induced drag forces_ and that the semispan of the curved wing is

or

_.31

times that of the flat wing. Thus, with use of figure 12j

__Mc= 1.16 - 1.02

Mf _.31

(42)

and it is seen that the root bending moment of the cambered wing is 2 percent

larger than that of the flat wing.

EFFECT OF BENDING MOMENT ON SECTION PROFILE THICKNESS

The bendlng-moment distribution of a cambered wing has an effect on the

profile drag of the wing through the thickness ratio of the section profiles.

The thickness distribution is dictated by the need to provide sufficient depth

within the profile for housing the wing spar. It is of course possible to make

the spar very thin for a given moment of inertia of its section 3 but then the

increase in induced drag due to the increased spar weight tends to cancel any

drag reduction due to the use of thin profiles. Thus_ in general, there exists

an optimum spar geometry which will result in minimum total wing drag. Although

a complete analysis for determining the optimum spar geometry is possible,

including both drag and weight effects, the following elementary considerations

are restricted to an analysis of the effects of the bending moment on the profile

drag only.

The Profile-Thickness Distribution

It is assumed herein that the spar of the camber-span wing is designed on

the basis of supporting a specified ultimate design load WD and that the load

and bending-moment distributions correspond to optimum loading conditions. The

basic design relation for the spar is then given by the allowable stress

condition

8max _Mmax (43)
Z

where 8ma x is the maximum allowable flexural stress in the spar material,

Mmax is the local bending moment corresponding to the ultimate load WD,

Z is the section modulus. The section modulus is defined by

and

z=!
h

(44)
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where I is the area momentof inertia of the section about the neutral axis
and h is the distance from the neutral axis to the outermost element of the
spar section.

For commonssu_metrical spar sections 3 such as rectangles, squares, and those
composedof elements of such forms, the neutral axis passes through the centroid
of area only in the absence of a resultant-force componentalong the local axis
of the spar. With camberedwings, the curvature of the span introduces an axial
force along the spar, and for symmetrical sections the neutral axis will be below
the centroid of area. However, in cases where the camber is moderate, the side
forces produced by the curvature are relatively small and the distance h in

1
equation (44) can be assumedequal to _ t, where t is the total spar depth.
For a specified section geometry, the area momentof inertia is

I = C2t4 (45)

where C2 is a constant characteristic of the geometry. From equation (44) the
section modulus becomes

C2t4Z = - ct 3
t/2

Substituting equation (46) into equation (43) gives the maximum-stress

relation as

(46)

ct3 >= Nmax - _ (47)

Omax

This equation indicates the primary effects of the bending-moment distribution.

If t is made large, c can be made very small and a light spar weight can be

obtained. However, a large value of t may cause an increase in profile drag.

On the other hand, a small value of t, while reducing the profile drag, will

require a large value for c with an accompanying increase in spar weight. When

a particular value of £ is specified_ the minimum allowable value of t is

determined as

t _- _ (48)

From equations (47) and (48) it is seen that the thickness t varies with

the cube root of the bending moment. Hence, it follows from equation (39) that

the relative minimum profile thicknesses of cambered and flat wings will be

proportional to the cube root of their moments, and that even though the moment

ratio may be large, the thickness ratio of the two wings can still be relatively

small. From a practical application standpoint, the increased thickness required

for the spars of cambered wings may not prove especially detrimental since a

number of profiles having very low drag at high thickness ratios exist. (See

ref. 2. )
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The MinimumProfile Drag

With a particular thickness distribution determined on the basis of equa-
tion (48), the effects of t(y) on the profile drag of the wing can be deter-
mined, and the optimum chord distribution Copt(Y), or Copt(S), can be estab-
lished for minimumprofile drag at cruise flight conditions. As shownin
reference 2, a cambered-spanwing will possess minimuminduced drag when the span
loading intensity F'(s) is such that equation (2) of the present paper applies.
The condition which must be satisfied for minimuminduced drag at cruise is
therefore

F' = ciqc (49)

where F' is determined by the cruise weight W and q is determined by the
flight speed and altitude. The corresponding profile-drag intensity Do ' is
given by

Do : cdqc (5O)

where cd is obtained from the section drag polar Cd(Ci).

In order to establish the optimum chord length for minimum profile drag, a

range of chord values is determined by substitution of various values for _ in

the thickness-ratio function

t
-- (51)

where t is now assumed to be a known function of y (or s) for the wing.

Then, by using equation (49) in the form

F ! - c c (52)
q

a value o£ c_ can be determined for each value of c. From the section polar

for each particular value of t/c = _ for the family of profiles under consider-

ation_ the value of c d corresponding to the e Z value can be read. Substitu-

tion of the corresponding values of c d and c into equation (50) allows the

calculation of the section profile drag Do ' A plot of D o ' as a function

of c (such as sketched in fig. 14) then reveals the optimum value of the chord

Cop t for minimum D o' for the family of profiles specified by the range of

values of _.

By use of the foregoing procedure, various families of wing section profiles

can be examined and the section possessing minimum profile drag at cruise for the

particular thickness function t(y) of the cambered wing can be determined.

This procedure gives an optimum chord distribution for the conditions of cruise

flight. As noted in reference 2, however, the slow-flight conditions of the
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take-off and landing phases of flight may require some compromise on the area

and chord distribution of the wing.

D i
o

DO '_min

I
I
I
I

C
opt

Figure 14.- Plot for determining the

optimum chord length.

AEROELASTIC EFFECTS

The basic relation governing the bending deflection of a wing under aero-

dynamic loading is given by

M (53)
R

In equation (53) R is the radius of curvature of the spar's neutral axis in

the stressed condition; the unstressed condition of the spar corresponds to a

linear neutral axis, that is, R = _. In usual practice# when the wing is

designed to support an ultimate load WD (which includes a suitable factor of

safety) the res_ting moment-of-inertia distribution is sufficiently large that,

for the bending moments normally encountered in fligh% R is very large and

the wing behaves essent_aliy as a rigid structure. When cambered-span wings are

designed on the basis of such procedures_ it is possible that in some cases

relatively thick sections can result because of the increased bending moments

near the wing tip_ as compared with those of flat-span wings. Since it is

desirable that the profile drag of cambered wings be minimized, it may be of

interest to briefly investigate the possibility of reducing the wing thickness

near the tip by making the wing relatively elastic in this region.

In making the wing elastic, two basic requirements must be met. First 3 the

thickness of the wing must be sufficiently small that the allowable stress is

not exceeded. Thus, when the tensile stress in the spar is considered as the

limiting factor 3
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t_ 2R
2 emax (54)

where n is a factor which specifies the neutral-axis location of the section.

(Because of the axial load on the spar of a cambered wing# the neutral axis will

not pass through the geometrical center of the section. ) The second requirement

is that the section moment of inertia be such as to allow the desired curvature,

that is_

l - RM (55)
E

If the value of R is reduced, the required value of I can be correspondingly

reduced and, hence, the thickness can be lowered. In this equation I is the

moment of inertia of the section about the neutral axis and_ for a given section

geometry, it will generally have a larger value for a cambered wing (because of

the factor n) than for a flat wing. (No account has been taken of the effects

on spar weight in these simple considerations. In general, however, increases

in the flexibility of a wing structure are accompanied by decreases in structural

weight.)

If the elastic tip region of a partially flexible cambered wing is designed

to attain its curvature z(y) by deforming under the design cruise flight load

Wc from an initially unstressed condition (where R = _), the local radius of

curvature of the neutral axis will be the same as that of the desired camber-line

form z(y) and, therefore,

- +d_ \7)g \ _---_) (56)

For certain cambered-wing forms, R can thus assume relatively small values.

For example, the radius of curvature of circular-arc segments is obtained from

equation (27)

R _l+lS 2
b'/2 2p

(57)

Thus, _ _ R__R____ i wh'en 0 _ _ _ i, and the local radius of curvature is
- b'/2 - - -

constant along the span. The local radius of curvature of a semiellipse is

given in nondimensional form by

R

b '/2
(58)
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A plot of equation (D8) is presented in figure ID for the particular case

= 0.5, and it is seen that the local radius of curvature is quite small

especially near the wing tips.

R

2.0

1.6 ..... _-._

0

0 • • -m .3 ._ .} .6 .? ,8 .9 l.o

7

Figure 15.- Local radius of curvature of the 8 = 0.5 semiellipse form.

There are obviously a number of fundamental problems associated with the

use of elastic wings, one of the most important being the provision for an ade-

quate ultimate strength factor. For elastic wings designed to accommodate a

flight load Wc, it would be necessary that the wing deformation under loads

greater than W c be such that 8_MM_ 0. This requirement could conceivably be
3W-

satisfied by special aeroelastic design of the wing tip regions.

CONCLUDING REMARKS

By use of the relations developed herein, the bending-moment distributions

for an optimum cambered-span wing system can be determined and the results used

to establish the basic structural requirements of the wing. Subsequently, the

effects of the structural characteristics on the wing profile drag can be deter-

mined, and the optimum chord distribution for cruise flight can be calculated.

The resulting aerodynamic efficiency of the cambered wing can then be compared

with that of the flat reference wing and the relative efficiencies evaluated.
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For more detailed and exact comparisons, of course, it will be necessary to con-

sider the effects of the structural weight on the resultant induced drag.

The simple structural analyses of this paper are based on the wing bending

moment alone. In some cases, the torsional and shear loads, rather than the

bending moment, may govern the spar thickness and weight. In any event, a com-

plete analysis must necessarily involve simultaneous consideration of all loads.

The results of the calculation of the bending-moment distributions for simple

circular-arc and semiellipse camber forms indicate that somewhat thicker spars

may be required for cambered wings, but that for moderate curvatures this increase

is not practically significant.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., November 7, 1962.
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APPENDIX

DERIVATION OF THE ARC LENGTH OF AN ELLIPSE

The parametric equations of the ellipse_ in terms of the eccentric angle _,

are given by

d /

T

b' _
y = y cos

z d sin _ J

(AI)

Y

The geometrical relations used in deter-

mining the arc length of the ellipse

forms are shown in the sketch. Differ-

entiating equation (A_I) gives

dy = b'- -- sin
a_ 2

dz

--=d coscp
d_

J

(Ae)

whence

dz d

d-_ = - _ ctn q0

Substituting equation (A]) into equation (15) yields the result

s = b' F__ in_ + COS dq)

2 .1_

(A3)

(A4)

In equation (A4) the arc length s is considered positive in the positive

y-direction (i.e., in the direction of decreasing _). Use of the definition

d in equation (A4) yields
= b'/2

$ _/2 Is 211/2d M
s _ in%'(1- + ,

b'/2

Integration of equation (AS) can be carried out numerically, by using the rela-

tion _ = cos -I _ from equation (AI), to obtain the function s(y) for the

ellipse form. This integration has been carried out for the family of semi-

ellipses 0 _ _ % i, and the results are presented in figure 9.
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